Probing the End of Helium Reionization at $z \sim 2.7$ with He II Lyman Alpha Absorption Spectra

Gábor Worseck (IMPS @ UCO/Lick)

&

J. X. Prochaska (IMPS @ UCO/Lick), M. McQuinn (UCB), A. Dall'Aglio (AIP),
 C. Fechner (UP), J. F. Hennawi (MPIA), P. Richter (UP),
 D. Reimers (Hamburg), L. Wisotzki (AIP)

Cosmology Seminar @ UC Berkeley November 8, 2011

Outline

Introduction

- Introduction: The IGM and helium reionization
- Finding rare He II quasar sightlines with GALEX UV photometry
- New HST/COS He II sightlines: He II reionization ends at $z \simeq 2.7$
- Resolving the process of He II reionization
- Conclusions

Introduction •000000000

A short history of the universe

Introduction

H absorbers: Sinks & diffuse sources of UV radiation

- balance between photoionization and radiative recombination
- frequency distribution of N_{HI} values for IGM absorbers ('clouds')
- $\log N_{\rm HI} < 14.5$: optically thin Ly α forest
- $\log N_{\rm HI} > 20.3$: optically thick damped systems
- $17.2 < \log N_{\rm HI} < 20.3$: Lyman limit systems identified by Lyman limit break ($\tau_{912} > 1$), translucent at high energies

Introduction

• $14.5 < \log N_{\rm HI} < 17.2$: translucent near the Lyman limit break

Sources of the UV background

Star-forming galaxies

- high space density
- small escape fraction
- soft UV radiation

Quasars

- low space density
- short lifetime (\sim 10 Myr)
- hard UV radiation

Overview: Intergalactic helium

- after reionization: IGM of H and He in photoionization equilibrium with UV background
- He reionization likely two-step process:
 - He I He II @ $z \sim 6$ ($h\nu > 24.6$ eV required)
 - Proof to the sum of t
- reason: hard UV photons only produced by quasars, full He reionization delayed until quasars sufficiently abundant
- Tracers of He II reionization:
 - indirect: IGM temperature, ionization state of IGM metals
 - direct: He II Ly α absorption at $\lambda_{rest} = 303.78$ Å (He II is hydrogenic ion)

Introduction

Simulations: He III bubbles around quasars

- semi-analytic models and radiative transfer simulations
- prediction: inhomogeneous and extended He II reionization $(\sim 1 \text{Gyr})$

Constraining He II reionization requires large samples

- large sightline variance in He II absorption, no impact on H I forest
- reason: stochasticity of He II-ionizing quasars
- ullet \gtrsim 25 He II sightlines can distinguish simple reionization models

McQuinn et al. (2009)

Problem I: Far UV \rightarrow Lyman continuum absorption

- far UV transition → space
- Galactic Lyman limit restricts He II observations to z > 2
- high-z Lyman limit systems → strong cumulative Lyman continuum absorption
- < 10% of all sightlines transparent at $\lambda_{\text{rest}} = 304\text{Å}$

Problem II: UV-bright quasars are rare!

- IGM absorption + QSO LF = number of UV-bright QSOs
- most UV-bright quasars at low redshifts for He II studies ($z_{em} < 3$)
- HST sensitivity limit: $z_{304} \gtrsim 2.7$
- prediction: $\sim 200~m_{304} < 21~\text{He\,{\sc ii}}$ quasars

→HST probes He II reion.!

assumption: unbiased ' 3π ' quasar survey at $m_{1450} < 19$

Introduction

Few He II observations to date $ightarrow Z_{ m reion} \sim 3$

- only 5 sightlines studied at R > 800 (HST/STIS, FUSE)
- main features: Gunn-Peterson trough at z > 3, patchy He II absorption at 2.7 < z < 3, forest at z < 2.7
- He III zones around background and foreground guasars

Selection of UV-bright QSOs from GALEX photometry

- previous surveys were UV-blind
- GALEX: first UV all-sky survey at $m_{\rm AB}\lesssim 21$
- two bands: NUV (1750-2200Å) and FUV (1350-1750Å)

Follow-up of GALEX-detected high-z quasars

- NUV flux is not sufficient (low-z Lyman limit systems)
 - significant FUV flux required (at least for $z_{em} < 3.5$ QSOs)

GALEX finds the known needles in the haystack

- FUV dropout: opaque sightline, He II not observable
- known He II quasars have blue GALEX UV colors

SDSS quasar selection depends on the u-g color

- mock SDSS photometry processed with SDSS quasar target selection routine
- color-selected SDSS quasars have redder u - g colors than radio-selected quasars
- SDSS preferentially selects quasars with red u - g colors at $3 < z_{em} < 3.6$
- reason: red quasars are stellar locus outliers. blue quasars have colors similar to stars → lost in stellar locus

SDSS color bias ---- SDSS Lyman limit system bias

- red u g colors primarily caused by IGM Lyman continuum absorption
- SDSS is Lyman break survey at $3 < z_{em} < 3.6$
- SDSS sightlines at $3 < z_{\rm em} < 3.6$ have too many Lyman limit systems
- SDSS is inefficient in finding UV-bright quasars

Introduction

- GALEX color selection: predicted success rate ~ 60%
- HST/COS FUV spectroscopy of 8 FUV-bright QSOs (21 orbits)
- UV-bright QSOs ($m_{\text{FUV}} < 21.5$): simultaneous confirmation and follow-up
- 6/8 sightlines transparent at He II edge

Fluctuating Gunn-Peterson troughs

Ground: Hydrogen at $z \sim 6$

Far UV: Helium (He II) at $z\sim3$

Ground: Hydrogen at $z \sim 6$

Far UV: Helium (He II) at $z\sim3$

He II reionization at $z \simeq 2.7$

Measurements: He II effective optical depth on \sim 10 proper Mpc

Measurements: He II effective optical depth on \sim 10 proper Mpc

- Measurements: He $\scriptstyle\rm II$ effective optical depth on \sim 10 proper Mpc
- ullet $z\lesssim$ 2.7: agreement with semi-analytic model of photoionized IGM

- Measurements: He II effective optical depth on \sim 10 proper Mpc
- $z \lesssim 2.7$: agreement with semi-analytic model of photoionized IGM
- $z \gtrsim 2.7$: large scatter in effective optical depth
- Our survey: $4 \times$ redshift pathlength at 2.7 < z < 3

Introduction

- Measurements: He II effective optical depth on \sim 10 proper Mpc
- $z \lesssim 2.7$: agreement with semi-analytic model of photoionized IGM
- $z \gtrsim 2.7$: large scatter in effective optical depth
- Our survey: $4 \times$ redshift pathlength at 2.7 < z < 3
- Numerical simulations (McQuinn et al. 2009): good match to data for $z_{reion} \simeq 2.7$, $z_{reion} \gtrsim 3$ ruled out

Comparison H I and He II

- H i: complementary optical spectroscopy (Keck/HIRES and VLT/UVES)
- co-eval H \mid Ly α forest traces density field
- underdense regions constrain He II fraction (McQuinn 2009)
- He II/H I traces SED of ionizing radiation field

The end stages of He II reionization

- H I breaks density degeneracy
- patchy He II absorption due to different ionization conditions instead of density fluctuations
- simulations: H I and He II correlated in reionized regions
- end stages of He II reionization at 2.7 < z < 3

A dedicated survey for He II-reionizing quasars

- Lyman break survey for faint ($g \lesssim 24.5$) quasars in the vicinity of He II sightlines
- goal: associate quasars with He II absorption features
- wide field (30′×30′) deep u band imaging
 - ▶ LBC @ LBT
 - ► MOSAIC @ KPNO
- spectroscopic follow-up
 - VIMOS @ VLT
 - ▶ LRIS @ Keck

Next steps

- He III zone or hard UV radiation near foreground guasar → light travel time gives lower limit on quasar lifetime
- current sample (3 quasars): 10-30 Myr

Quasar light fronts in comoving space

A dedicated multi-color survey for UV-bright quasars

- most GALEX-detected quasars too faint for HST
- SDSS selects against UV-bright quasars
- goal: find the missing quasars via their unusual SED

- follow-up spectroscopy of promising SDSS+GALEX sources with Lick/KAST and CAHA/CAFOS
- so far: 22 quasars (2.7 < z < 3.8) ready for HST/COS
- continuation in 2012

Introduction

Shedding light on the 2nd epoch of reionization

- He II Ly α absorption probes He II reionization
 - ► Gunn-Peterson troughs large He II fraction
 - ▶ Large sample variance predicted → large samples required
- Efficient He II target selection via GALEX photometry
 - Blue GALEX colors indicate transparent sightlines
 - SDSS selects against UV-bright quasars
- HST/COS: Six new He II absorption spectra
 - ▶ 4× previous redshift pathlength in He II absorption
 - ▶ Variance in He II absorption at $z \sim 2.9$
 - —delayed and inhomogeneous He reionization
 - ► Comparison to simulations: He II reionization ended at $z \simeq 2.7$
- Resolving the process of He II reionization
 - New sample of UV-bright quasars missed by SDSS
 - Survey for foreground quasars to interpret He II absorption spectra
 - Unique constraints on quasar lifetime and anisotropy